PUBLICATIONS


(36) Leniart, A. A.; Pula, P.; Sitkiewicz, A.; Majewski, P. W. Macroscopic Alignment of Block Copolymers on Silicon Substrates by Laser Annealing. ACS Nano 2020, https://doi.org/10.1021/acsnano.0c00696.
(35) Basutkar, M. N.; Majewski, P. W.; Doerk, G. S.; Toth, K.; Osuji, C. O.; Karim, A.; Yager, K. G. Aligned Morphologies in Near-Edge Regions of Block Copolymer Thin Films. Macromolecules 2019, 52 (19), 7224–7233. https://pubs.acs.org/doi/10.1021/acs.macromol.9b01703
(34) Majewski, P. W.; Gopinadhan, M.; Osuji, C. O. The Effects of Magnetic Field Alignment on Lithium Ion Transport in a Polymer Electrolyte Membrane with Lamellar Morphology. Polymers (Basel). 2019, 11 (5), 887. https://doi.org/10.3390/polym11050887.
(33) Novotná, V.; Hamplová, V.; Lejček, L.; Pociecha, D.; Cigl, M.; Fekete, L.; Glogarová, M.; Bednárová, L.; Majewski, P. W.; Gorecka, E. Organic Nanotubes Created from Mesogenic Derivatives. Nanoscale Adv. 2019, 1 (8), 2835–2839. https://doi.org/10.1039/C9NA00175A
Liquid crystal nanotubes rolling-up mechanism.
(32) Vaupotič, N.; Ali, M.; Majewski, P. W.; Gorecka, E.; Pociecha, D. Polarization Gratings Spontaneously Formed from a Helical Twist-Bend Nematic Phase. ChemPhysChem 2018, 19 (19), 2566–2571. https://doi.org/10.1002/cphc.201800360
(31) Liu, X.; Liu, W.; Carr, A. J.; Santiago Vazquez, D.; Nykypanchuk, D.; Majewski, P. W.; Routh, A. F.; Bhatia, S. R. Stratification during Evaporative Assembly of Multicomponent Nanoparticle Films. J. Colloid Interface Sci. 2018, 515, 70–77. https://doi.org/10.1016/j.jcis.2018.01.005
(30) Choo, Y.; Majewski, P. W.; Fukuto, M.; Osuji, C. O.; Yager, K. G. Pathway-Engineering for Highly-Aligned Block Copolymer Arrays. Nanoscale 2018, 10 (1), 416–427. https://doi.org/10.1039/c7nr06069f
(29) Rokhlenko, Y.; Majewski, P. W.; Larson, S. R.; Gopalan, P.; Yager, K. G.; Osuji, C. O. Implications of Grain Size Variation in Magnetic Field Alignment of Block Copolymer Blends. ACS Macro Lett. 2017, 6 (4), 404–409. https://doi.org/10.1021/acsmacrolett.7b00036
(28) Kaufman, G.; Montejo, K. A.; Michaut, A.; Majewski, P. W.; Osuji, C. O. Photoresponsive and Magnetoresponsive Graphene Oxide Microcapsules Fabricated by Droplet Microfluidics. ACS Appl. Mater. Interfaces 2017, 9 (50), 44192–44198. https://doi.org/10.1021/acsami.7b14448
(27) Rahman, A.; Majewski, P. W.; Doerk, G.; Black, C. T.; Yager, K. G. Non-Native Three-Dimensional Block Copolymer Morphologies. Nat. Commun. 2016, 7 (1), 13988. https://doi.org/10.1038/ncomms13988
(26) Majewski, P. W.; Yager, K. G. Reordering Transitions during Annealing of Block Copolymer Cylinder Phases. Soft Matter 2016, 12 (1), 281–294. https://doi.org/10.1039/C5SM02441B
SEM of cylinder-forming BCP film during the reorientation transition.
(25) Majewski, P. W.; Yager, K. G. Rapid Ordering of Block Copolymer Thin Films. J. Phys. Condens. Matter 2016, 28 (40), 403002. https://doi.org/10.1088/0953-8984/28/40/403002
Spatiotemporal character of various DSA methods.
(24) Rokhlenko, Y.; Gopinadhan, M.; Osuji, C. O.; Zhang, K.; O’Hern, C. S.; Larson, S. R.; Gopalan, P.; Majewski, P. W.; Yager, K. G. Magnetic Alignment of Block Copolymer Microdomains by Intrinsic Chain Anisotropy. Phys. Rev. Lett. 2015, 115 (25), 258302. https://doi.org/10.1103/PhysRevLett.115.258302
Magnetic alignment of low-molecular PS-b-4VP lamellar block copolymer.
(23) Majewski, P. W.; Rahman, A.; Black, C. T.; Yager, K. G. Arbitrary Lattice Symmetries via Block Copolymer Nanomeshes. Nat. Commun. 2015, 6 (1), 7448. https://doi.org/10.1038/ncomms8448
Hexagonal tri-layered Pt nanowire mesh templated from a BCP.
(22) Majewski, P. W.; Yager, K. G. Millisecond Ordering of Block Copolymer Films via Photothermal Gradients. ACS Nano 2015, 9 (4), 3896–3906. https://doi.org/10.1021/nn5071827
Millisecond ordering of BCP films.
(21) Majewski, P. W.; Yager, K. G. Block Copolymer Response to Photothermal Stress Fields. Macromolecules 2015, 48 (13), 4591–4598. https://doi.org/10.1021/acs.macromol.5b00955
Photothermal shearing of block-copolymer thin films.
(20) Majewski, P. W.; Yager, K. G. Latent Alignment in Pathway-Dependent Ordering of Block Copolymer Thin Films. Nano Lett. 2015, 15 (8), 5221–5228. https://doi.org/10.1021/acs.nanolett.5b01463
BCP Ordering pathways
(19) Deshmukh, P.; Gopinadhan, M.; Choo, Y.; Ahn, S. K.; Majewski, P. W.; Yoon, S. Y.; Bakajin, O.; Elimelech, M.; Osuji, C. O.; Kasi, R. M. Molecular Design of Liquid Crystalline Brush-like Block Copolymers for Magnetic Field Directed Self-Assembly: A Platform for Functional Materials. ACS Macro Lett. 2014, 3 (5), 462–466. https://doi.org/10.1021/mz500161k
(18) Gopinadhan, M.; Deshmukh, P.; Choo, Y.; Majewski, P. W.; Bakajin, O.; Elimelech, M.; Kasi, R. M.; Osuji, C. O. Thermally Switchable Aligned Nanopores by Magnetic-Field Directed Self-Assembly of Block Copolymers. Adv. Mater. 2014, 26 (30), 5148–5154. https://doi.org/10.1002/adma.201401569
Thermally-switchable BCP membrane.
(17) Yager, K. G.; Majewski, P. W. Metrics of Graininess: Robust Quantification of Grain Count from the Non-Uniformity of Scattering Rings. J. Appl. Crystallogr. 2014, 47 (6), 1855–1865. https://doi.org/10.1107/S1600576714020822
Grain-size quantification by analysis of azimuthal scattering distribution.
(16) Pelligra, C. I.; Majewski, P. W.; Osuji, C. O. Large Area Vertical Alignment of ZnO Nanowires in Semiconducting Polymer Thin Films Directed by Magnetic Fields. Nanoscale 2013, 5 (21), 10511–10517. https://doi.org/10.1039/c3nr03119e
Large area magnetic alignment of Co-doped ZnO nanowires.
(15) Tran, H.; Gopinadhan, M.; Majewski, P. W.; Shade, R.; Steffes, V.; Osuji, C. O.; Campos, L. M. Monoliths of Semiconducting Block Copolymers by Magnetic Alignment. ACS Nano 2013, 7 (6), 5514–5521. https://doi.org/10.1021/nn401725a
Magnetically-ordered BCP-perylene conjugates.
(14) Gopinadhan, M.; Majewski, P. W.; Choo, Y.; Osuji, C. O. Order-Disorder Transition and Alignment Dynamics of a Block Copolymer Under High Magnetic Fields by In Situ X-Ray Scattering. Phys. Rev. Lett. 2013, 110 (7), 078301. https://doi.org/10.1103/PhysRevLett.110.078301
Alignment dynamics of a BCP under high magnetic fields.
(13) Majewski, P. W.; Gopinadhan, M.; Osuji, C. O. Understanding Anisotropic Transport in Self-Assembled Membranes and Maximizing Ionic Conductivity by Microstructure Alignment. Soft Matter 2013, 9 (29), 7106. https://doi.org/10.1039/c3sm50320h
Anisotropic ion transport in self-assembled membranes.
(12) Kijewska, K.; Blanchard, G. J.; Szlachetko, J.; Stolarski, J.; Kisiel, A.; Michalska, A.; Maksymiuk, K.; Pisarek, M.; Majewski, P.; Krysiński, P.; et al. Photopolymerized Polypyrrole Microvessels. Chem. – A Eur. J. 2012, 18 (1), 310–320. https://doi.org/10.1002/chem.201101400
Photo-polymerized polypyrrole microvessels.
(11) Zhang, S.; Pelligra, C. I.; Keskar, G.; Jiang, J.; Majewski, P. W.; Taylor, A. D.; Ismail-Beigi, S.; Pfefferle, L. D.; Osuji, C. O. Directed Self-Assembly of Hybrid Oxide/Polymer Core/Shell Nanowires with Transport Optimized Morphology for Photovoltaics. Adv. Mater. 2012, 24 (1), 82–87. https://doi.org/10.1002/adma.201103708
Directed self-assembly of hybrid oxide/polymer core/shell nanowires.
(10) Majewski, P. W.; Gopinadhan, M.; Osuji, C. O. Magnetic Field Alignment of Block Copolymers and Polymer Nanocomposites: Scalable Microstructure Control in Functional Soft Materials. J. Polym. Sci. Part B Polym. Phys. 2012, 50 (1), 2–8. https://doi.org/10.1002/polb.22382
Field –aligned block-copolymer membrane.
(9) Gopinadhan, M.; Majewski, P. W.; Beach, E. S.; Osuji, C. O. Magnetic Field Alignment of a Diblock Copolymer Using a Supramolecular Route. ACS Macro Lett. 2012, 1 (1), 184–189. https://doi.org/10.1021/mz2001059
Magnetically-aligned BCP complexed by small liquid crystal molecules.
(8) Zhang, S.; Pelligra, C. I.; Keskar, G.; Majewski, P. W.; Ren, F.; Pfefferle, L. D.; Osuji, C. O. Liquid Crystalline Order and Magnetocrystalline Anisotropy in Magnetically Doped Semiconducting ZnO Nanowires. ACS Nano 2011, 5 (10), 8357–8364. https://doi.org/10.1021/nn203070d
Micrographs of field-aligned magnetically doped semiconducting ZnO nanowires.
(7) Zhang, S.; Majewski, P. W.; Keskar, G.; Pfefferle, L. D.; Osuji, C. O. Lyotropic Self-Assembly of High-Aspect-Ratio Semiconductor Nanowires of Single-Crystal ZnO. Langmuir 2011, 27 (18), 11616–11621. https://doi.org/10.1021/la200703u

Liquid crystalline textures in lyotropic self-assembled ZnO nanowires.

(6) Majewski, P. W.; Gopinadhan, M.; Jang, W. S.; Lutkenhaus, J. L.; Osuji, C. O. Anisotropic Ionic Conductivity in Block Copolymer Membranes by Magnetic Field Alignment. J. Am. Chem. Soc. 2010, 132 (49), 17516–17522. https://doi.org/10.1021/ja107309p
Anisotropic ionic conductivity in block copolymer membranes.
(5) Majewski, P. W.; Osuji, C. O. Controlled Alignment of Lamellar Lyotropic Mesophases by Rotation in a Magnetic Field. Langmuir 2010, 26 (11), 8737–8742. https://doi.org/10.1021/la100285j
Alignment of lamellar lyotropic mesophases by rotation in a magnetic field.
(4) Gopinadhan, M.; Majewski, P. W.; Osuji, C. O. Facile Alignment of Amorphous Poly(Ethylene Oxide) Microdomains in a Liquid Crystalline Block Copolymer Using Magnetic Fields: Toward Ordered Electrolyte Membranes. Macromolecules 2010, 43 (7), 3286–3293. https://doi.org/10.1021/ma9026349
Schematic representation of X-ray scattering patterns under orthogonal angles of incidence.
(3) Majewski, P. W.; Osuji, C. O. Non-Degenerate Magnetic Alignment of Self-Assembled Mesophases. Soft Matter 2009, 5 (18), 3417–3421. https://doi.org/10.1039/b910705c
2-D X-ray scattering pattern of magnetically-aligned lamellar mesophase.
(2) Majewski, P.; Krysiński, P. Synthesis, Surface Modifications, and Size-Sorting of Mixed Nickel-Zinc Ferrite Colloidal Magnetic Nanoparticles. Chem. – A Eur. J. 2008, 14 (26), 7961–7968. https://doi.org/10.1002/chem.200800369
Surface modifications and size‐sorting of nickel–zinc ferrite nanoparticles.
(1) Naughton, B. T.; Majewski, P.; Clarke, D. R. Magnetic Properties of Nickel–Zinc Ferrite Toroids Prepared from Nanoparticles. J. Am. Ceram. Soc. 2007, 90 (11), 3547–3553. https://doi.org/10.1111/j.1551-2916.2007.01981.x
Toroids prepared from nickel–zinc ferrite nanoparticles.